

MATHEMATICS (EXTENSION 2)

2012 HSC Course Assessment Task 3 (Trial Examination) June 21, 2012

General instructions

- Working time 3 hours. (plus 5 minutes reading time)
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- Board approved calculators may be used.
- Attempt all questions.
- At the conclusion of the examination, bundle the booklets + answer sheet used in the correct order within this paper and hand to examination supervisors.

(SECTION I)

• Mark your answers on the answer sheet provided (numbered as page 10)

(SECTION II)

- Commence each new question on a new page. Write on both sides of the paper.
- All necessary working should be shown in every question. Marks may be deducted for illegible or incomplete working.

STUDENT NUMBER:		# BOOKLETS USED:			
Class (please ✔)					
○ 12M4A – Mr Weiss	\bigcirc 12M4B – Mr Ireland	\bigcirc 12M4C – Mr Fletcher			

Marker's use only.

QUESTION	1-10	11	12	13	14	15	16	Total
MARKS	10	15	15	15	15	15	15	100

2

Section I: Objective response

Mark your answers on the multiple choice sheet provided.

Marks

1

1

1

1. The region in the first quadrant between the x axis and $y = 6x - x^2$ is rotated about the y axis. The volume of this solid of revolution is

(A)
$$\int_0^6 \pi (6x - x^2) dx$$

(C)
$$\int_0^6 \pi x \left(6x - x^2\right)^2 dx$$

(B)
$$\int_0^6 2\pi x \left(6x - x^2\right) dx$$

(D)
$$\int_0^6 \pi \left(3 + \sqrt{9 - y}\right)^2 dx$$

2. What are all the values of k for which the graph of $y = x^3 - 3x^2 + k$ will have three distinct x intercepts?

(A) all
$$k > 0$$

(C)
$$k = 0, 4$$

(B) all
$$k < 4$$

(D)
$$0 < k < 4$$

3. Which of the following is the triple root of the equation

$$8x^4 + 12x^3 - 30x^2 + 17x - 3 = 0$$

(A)
$$\frac{1}{2}$$

(B)
$$-\frac{5}{4}$$

(C)
$$-3$$

- **4.** If *n* is a non-negative integer, then for what values of *n* is $\int_0^1 x^n dx = \int_0^1 (1-x)^n dx$ true?
 - (A) no solution

(C) non zero n, only

(B) n even, only

- (D) all values of n
- **5.** What are the coordinates of the foci of xy = 18?

(A)
$$(0,6), (0,-6)$$

(C)
$$(3\sqrt{2}, 3\sqrt{2}), (-3\sqrt{2}, -3\sqrt{2})$$

(B)
$$(0, 3\sqrt{2}), (0, -3\sqrt{2})$$

(D)
$$(6,6), (-6,6)$$

1

6. Which of the following inequalities is represented by the Argand diagram?

(A) $|z - 1| \le 2$

(C) $|z+1| \le 2$

(B) $|z - i| \le 2$

(D) $|z + i| \le 2$

7. What does $\int \frac{dx}{(x-1)(x+2)}$ evaluate to?

1

(A) $\frac{1}{3}\log_e\left|\frac{x-1}{x+2}\right| + C$

(C) $\frac{1}{3}\log_e|(x-1)(x+2)| + C$

- (B) $\frac{1}{3}\log_e\left|\frac{x+2}{x-1}\right| + C$
- (D) $(\log_e |x-1|) (\log_e |x+2|)$

8. What is the value of $\int_0^1 xe^{-x} dx$?

1

(A) 1 - 2e

(C) $1 - 2e^{-1}$

(B) -1

(D) 2e - 1

9. What is the value of the eccentricity of the hyperbola $\frac{x^2}{9} - \frac{y^2}{4} = 1$?

1

(A) $\frac{3}{\sqrt{13}}$

(C) $\frac{11}{\sqrt{5}}$

(B) $\frac{\sqrt{13}}{3}$

(D) $\sqrt{2}$

10. What is the value of $\frac{dy}{dx}$ at the point (1,2) if $xy^2 + 2xy = 8$?

1

(A) $-\frac{5}{2}$

(C) -1

(B) $-\frac{4}{3}$

(D) $-\frac{1}{2}$

End of Section I
Examination continues overleaf...

Section II: Short answer

Question 11 (15 Marks)

Commence a NEW page.

Marks

(a) Evaluate:

i.
$$\int \frac{dx}{\sqrt{7 - 9x - x^2}}$$

ii.
$$\int \frac{dx}{x \log_e x}$$

(b) Evaluate
$$\int_{1}^{2} \frac{dx}{x(1+x^{2})}.$$

(c) Evaluate
$$\int \frac{x}{\sqrt{1-x}} dx$$
.

(d) Find
$$\int e^{-2x} \cos x \, dx$$
.

Question 12 (15 Marks)

Commence a NEW page.

Marks

3

- (a) Show that 3i is a root of $P(x) = x^4 3x^3 + 5x^2 27x 36$, and hence solve P(x) = 0 completely.
- (b) If α , β and γ are roots of $3x^3 + 4x^2 + 5x + 1 = 0$, find the value of

$$\frac{1}{\alpha^2 \beta^2} + \frac{1}{\beta^2 \gamma^2} + \frac{1}{\alpha^2 \gamma^2}$$

- (c) Given $Q(x) = x^4 5x^3 + 4x^2 + 3x + 9$ has a root of multiplicity 2, solve Q(x) = 0 over \mathbb{C} .
- (d) The roots of the polynomial equation $x^3 2x^2 + 3x + 1 = 0$ are α , β and γ .

 3 Find the value of $\alpha^3 + \beta^3 + \gamma^3$.
- (e) The polynomial $x^5 ax^2 + b = 0$ has a multiple root.

Show that $108a^5 = 3125b^3$.

 $\mathbf{2}$

Question 13 (15 Marks)

Commence a NEW page.

Marks

(a) Sketch the region in the Argand diagram which simultaneously satisfies the following inequalities:

 $\begin{cases} |z - 2i| \le 2\\ \operatorname{Im}(z) \ge 2 \end{cases}$

(b) What is the locus in the Argand diagram of the point z such that

3

$$z\overline{z} - 2(z + \overline{z}) = 5$$

(c) Find the value of z^{10} in Cartesian form, given that

3

$$z = \sqrt{2} - \sqrt{2}i$$

(d) In the following Argand diagram, P represents the point 6 + ai, and O is the origin.

Find the complex number represented by the point B, given $\angle POB = 90^{\circ}$ and

$$2|OB| = 3|OP|$$

- 4
- Two perpendicular chords PQ and XY of a circle intersect at Z. Copy the diagram into your writing booklet.

If M is the midpoint of the chord QX, prove that MZ produced is perpendicular to the chord PY.

(e)

Question 14 (15 Marks)

Commence a NEW page.

Marks

(a) Sketch the following graphs:

i.
$$y = |\sin x| \text{ for } -2\pi \le x \le 2\pi.$$

ii.
$$y = \sqrt{x^2 - 4}$$

iii.
$$y^2 = x^2 - 9x$$

(b) Sketch
$$y = \frac{1}{(x-1)^2(x+2)}$$
.

(c) The diagram shows the graph of f(x).

Sketch the following curves on separate diagrams, clearly indicating any turning points and asymptotes.

i.
$$y = \frac{1}{f(x)}$$

ii.
$$y = f(|x|)$$

iii.
$$y = \log_e(f(x))$$

iv.
$$y = e^{f(x)}$$

5

Question 15 (15 Marks)

Commence a NEW page.

Marks

(a) A solid of height $10 \,\mathrm{m}$ stands on horizontal ground. The base of the solid is an ellipse with semi-axes of $20 \,\mathrm{m}$ and $10 \,\mathrm{m}$. Horizontal cross-sections taken parallel to the base and at height h metres above the base are ellipses with semi-axes x metres and $\frac{x}{2}$ metres so that the centres of these elliptical cross-sections lie on a vertical straight line, and the extremitites of their semi-axes line on sloping straight lines as shown in the diagram. The top of the solid is an ellipse with semi-axes $10 \,\mathrm{m}$ and $5 \,\mathrm{m}$.

Show that the volume V m³ of the solid is given by

$$V = \frac{\pi}{2} \int_0^{10} (20 - h)^2 \, dh$$

and hence find the volume correct to the nearest cubic metre.

(b) The shaded region shown in the diagram below is bounded by $y = \frac{1}{x}$, $y = \frac{x^2}{8}$ and x = 1. This region is rotated about the line x = 1.

- i. Find an integral which gives the volume of the resulting solid of revolution using the method of cylindrical shells.
- ii. Find the volume of the solid of revolution.

4

 $\mathbf{2}$

(c) On the number plane, shade the region

$$(x-a)^2 + (y-b)^2 \le R^2$$

where R < b < a.

Find the volume when this shape is rotated about the y axis using the method of slices.

Question 16 (15 Marks)

Commence a NEW page.

Marks

 $\mathbf{2}$

(a) i. Determine the real values of p for which the equation

$$\frac{x^2}{3+p} + \frac{y^2}{8+p} = 1$$

defines

$$(\alpha)$$
 an ellipse 1

$$(\beta)$$
 a hyperbola 2

- ii. For the value p = -4 in the above equation, find the
 - eccentricity
 - coordinates of the foci, and
 - the equations of the directrices

of the conic.

(b) P is a point on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with centre at the origin O.

A line drawn from the origin O, parallel to the tangent to the ellipse at P, meets the ellipse at Q.

- i. Derive the equation of the tangent at $P(a\cos\theta, b\sin\theta)$.
- ii. Hence or otherwise, prove that the area of $\triangle OPQ$ is independent of the position of P.
- (c) i. Find the equation of the normal at $P(a \sec \theta, b \tan \theta)$ to the hyperbola 2

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

ii. This normal intersects the x and y axes at Q and R respectively. M(x,y) is the midpoint of QR. Find the equation of the locus of M as P varies on the hyperbola.

End of paper.

STANDARD INTEGRALS

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1} + C, \qquad n \neq -1; \quad x \neq 0 \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x + C, \qquad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax} + C, \qquad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax + C, \qquad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax + C, \qquad a \neq 0$$

$$\int \sec^{2} ax dx = \frac{1}{a} \tan ax + C, \qquad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax + C, \qquad a \neq 0$$

$$\int \frac{1}{a^{2} + x^{2}} dx = \frac{1}{a} \tan^{-1} \frac{x}{a} + C, \qquad a \neq 0$$

$$\int \frac{1}{\sqrt{x^{2} - a^{2}}} dx = \sin^{-1} \frac{x}{a} + C, \qquad a > 0, -a < x < a$$

$$\int \frac{1}{\sqrt{x^{2} + a^{2}}} dx = \ln \left(x + \sqrt{x^{2} + a^{2}} \right) + C, \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^{2} + a^{2}}} dx = \ln \left(x + \sqrt{x^{2} + a^{2}} \right) + C$$

NOTE: $\ln x = \log_e x, x > 0$

Answer sheet for Section I

Mark answers to Section I by fully blackening the correct circle, e.g "•"

STUDENT NUMBER:

Class (please ✓)

- 12M4A Mr Weiss 12M4B Mr Ireland 12M4C Mr Fletcher

- 1 (A) (B) (C) (D)
- $\mathbf{2}$ \mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D}
- 3 \bigcirc \bigcirc \bigcirc \bigcirc
- 4 (A) (B) (C) (D)
- $\mathbf{5}$ (A) (B) (C) (D)
- 6 (A) (B) (C) (D)
- $7 \mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D}$
- 8- (A) (B) (C) (D)
- 9- (A) (B) (C) (D)
- 10 (A) (B) (C) (D)

$$|||) \quad a) \quad i/\int \frac{dn}{\sqrt{7-9x-n^2}}$$

$$= \int \frac{dx}{\sqrt{\frac{109}{4} - (\frac{9}{2}-x)^2}}$$

$$= \sin^{-1}\left(\frac{2x+9}{\sqrt{109}}\right) + C$$

$$= \ln(\ln|n|) + C$$

b)
$$\int_{1}^{2} \frac{dn}{x(1+x^{2})}$$
Partial fractions
$$\frac{i}{x(1+x^{2})} = \frac{a}{x} + \frac{bx+c}{1+x^{2}}$$

$$\frac{i}{x(1+x^{2})} = \frac{a}{x} + \frac{bx+c}{1+x^{2}}$$

$$\frac{i}{x(1+x^{2})} = \frac{a}{x(1+x^{2})} + \frac{bx^{2}+c}{1+x^{2}}$$

$$\frac{a+b=0}{c=0}$$

$$c=0$$

$$a=1 \quad b=-1$$

$$\int_{1}^{2} \frac{dn}{x(1+x^{2})} = \int_{1}^{2} \frac{1}{x(1+x^{2})} + \frac{x}{1+x^{2}}$$

$$= \ln x - \frac{i}{2} \ln(i+x^2) \int_{1}^{2}$$

$$= \ln x - \ln i - \frac{i}{2} \ln 5 + \frac{i}{2} \ln 2$$

$$= \frac{3}{2} \ln 2 - \frac{i}{2} \ln 5$$

$$= \ln 2 \sqrt{\frac{2}{5}}$$

$$= 0.235 \text{ for } 3D.P.$$

$$\int \frac{x}{\sqrt{1-x}} dx$$

$$u^{2} = 1-x$$

$$2u du = -dx$$

$$\int \left(\frac{1-u^{2}}{u}\right) - 2u du$$

$$= \int -2u + 2u^{32} du$$

$$= \frac{2u^{3}}{3} - 2u + C$$

$$= \frac{2}{3} \left(1-2u\right)^{\frac{3}{2}} - 2\left(1-x\right)^{\frac{3}{2}} + C$$

$$u dv$$

$$\int e^{-2x} cos n dn$$

$$I = e^{-2x} sin x + 2 \int sin x e^{-2x} dn$$

$$= e^{-2x} sin x - 2 cos x e^{-2x} - 4 \int cos x e^{-2x} dn$$

$$= \frac{1}{3} e^{-2x} sin x - 2 cos x e^{-2x}$$

$$= \frac{1}{3} e^{-2x} \left(sin x - 2 cos x e^{-2x}\right) + C$$

QI- Q10

1. B

6. A

2. D

7. A

3. A

8. C

4. D

9. B

5. D

10 B

Q12

(a)
$$P(x) = x^4 - 3x^3 + 5x^2 - 27x - 36$$

 $P(3i) = (3i)^4 - 3(3i)^3 + 5(3i)^2 - 27(3i) - 36$
 $= 81 + 81i - 45 - 81i - 36$

.. 3i in a not

Real coeffo : - - 3i also a root.

$$\rho(x) = (x+3i)(x-3i) \rho(x)
= (x^2+9) (x^2-3x-4)
= (x^2+9) (x-4) (x+1)$$

.. roots are ± 3i, 4, -1

(ALT. use sum & product of roots).

(b)
$$3x^{3} + 4x^{2} + 5x + 1 = 0$$

$$\frac{1}{d^{2}\beta^{2}} + \frac{1}{d^{2}\delta^{2}} + \frac{1}{\beta^{2}\delta^{2}} = \frac{\alpha^{2} + \beta^{2} + \delta^{2}}{(\alpha\beta\delta)^{2}}$$

$$= \frac{(\alpha + \beta + \delta)^{2} - 2(\alpha\beta + \alpha\delta + \beta\delta)}{(\alpha\beta\delta)^{2}}$$

$$= \frac{(-\frac{4}{3})^{2} - 2(\frac{5}{3})}{(-\frac{1}{3})^{2}}$$

$$= -14$$

(ALT: Create the equation with roots equal to d2, p2 and 82, and proceed from there.)

012

(c)
$$Q(x) = x^4 - 5x^3 + 4x^2 + 3x + 9$$

 $Q'(x) = 4x^3 - 15x^2 + 8x + 3$

First, find roots of Q'(x) = 0. Q'(1) = 0 but $Q(1) \neq 0$

Q'(3) = 0, and Q(3) = 0 : x = 3 is the double root

$$\therefore Q(x) = (x-3)^2 \cdot S(x)$$

$$= (x-3)^2 (x^2 + x + 1) \quad (by inspection or) \quad \checkmark$$

 $(x-3)^{2} = 0 \quad \text{or} \quad x^{2} + x + 1 = 0$ $x = 3, 3, -1 \pm i \sqrt{3}$

(d)
$$P(x) = x^3 - 2x^2 + 3x + 1 = 0$$

 $\alpha, \beta, \gamma \text{ are roots}, i.$
 $\alpha^3 - 2\alpha^2 + 3\alpha + 1 = 0$
 $\beta^3 - 2\beta^2 + 3\beta + 1 = 0$
 $\gamma^3 - 2\gamma^2 + 3\gamma + 1 = 0$

adding: $\alpha^3 + \beta^3 + \beta^3 = 2(\alpha^2 + \beta^2 + \beta^2) + 3(\alpha + \beta + \delta) + 3 = 0$ (method).

Now
$$\alpha^2 + \beta^2 + \delta^2 = (\alpha + \beta + \delta)^2 - 2(\alpha \beta + \alpha \delta + \beta \delta)$$

= $(2)^2 - 2(3) = -2$

 $d^{3}+\beta^{3}+\delta^{3} - 2(-2) + 3(2) + 3 = 0$ $d^{3}+\beta^{3}+\delta^{3} = -13. \quad \sqrt{\text{(find)} \text{answer)}}$

$$P(x) = x^5 - ax^2 + b^2 = 0$$
 has a multiple root.
Call it α .
Now $P'(x) = 5x^4 - 2ax$.

We have
$$P(\alpha) = P'(\alpha) = 0$$

$$d^{5} - a\alpha^{2} + b = 0 \qquad (1)$$

$$5\alpha^{4} - 2a\alpha = 0 \qquad (2)$$

From (2),
$$\chi (5 \alpha^3 - 2a) = 0$$

$$d = 0$$
 or $d^3 = \frac{2q}{5}$

But
$$N(0) \neq 0$$
 ... $\alpha^{3} = \frac{2a}{5}$.: $\alpha = (\frac{2a}{5})^{\frac{1}{3}}$

Sub. into(1):
$$(\frac{2a}{5})^{\frac{5}{3}} - a \cdot (\frac{2a}{5})^{\frac{2}{3}} = -b$$

Factorise:
$$-\frac{5}{a^{\frac{5}{3}}} \cdot (\frac{2}{5} - 1) = -b$$

$$a^{\frac{5}{3}} \cdot \left(\frac{2}{5}\right)^{\frac{1}{3}} \cdot \left(-\frac{3}{5}\right) = -b$$

Cube both sides:

$$a^{5} \left(\frac{2}{5}\right)^{2} \left(-\frac{3}{5}\right)^{3} = -b^{3}$$

$$-\frac{108 \ a^{5}}{3125} = -b^{3}$$

Failure to eliminate d = 0 as a possibility costs a mark.]

Let
$$z=x+iy$$
 \therefore $\bar{z}=x-iy$
 \therefore $z\bar{z}=x^2+y^2$, $z+\bar{z}=2x$ V

$$x^{2}+y^{2}-4x = 5$$

$$x^{2}-4x+4+y^{2}=9$$

$$(x-2)^{2}+y^{2}=3^{2}$$

:.
$$z^{10} = 2^{10} \cdot cis(-\frac{5\pi}{2})$$

(by De Moivre)

= $z^{10} cis(-\frac{\pi}{2}) = 1024 \cdot -i$

= $-1024 i$

We're told [0B] = 3. [0P]

Thus \overrightarrow{OB} is obtained from \overrightarrow{OP} by a clockwise rotation $7\frac{11}{2}$ and a stretching by a factor $7\frac{3}{2}$.

$$\therefore \overrightarrow{OB} \text{ represents } \underbrace{\frac{3}{2} \cdot -i \cdot (6+ai)}_{=-9i + \frac{3}{4}a}$$

$$= -9i + \frac{3a}{2}$$

B represents $\frac{3a}{2} - 9i$.

(find answer)

Q13 (e)

Given: PQ 1 XY MX = MQ

Let MZ produced meet PY at N. To prove: MN I PY

Since <XZQ = 90° and MX = MQ,

.. XQ is the diameter of a circle, centre M,

that passes through Z. [converse to angle in a]

Thus MZ = MX = MQ

Let $\angle YPQ = X$ $\therefore \angle ZXQ = X$ (angles standing on same arc QY) $\therefore \angle XQZ = 90-X$ (angle sum of AXZQ, given $\angle XZQ = 90^{\circ}$)

Now < MZQ = < mQZ (base angles of isosceles \$\Delta mZQ)
= 90-\$\Omega\$.

Thus $\langle PZN = \langle MZQ \text{ (vertically opposite } \langle S \rangle)$ = $90 - \times$.

Thus < PNZ = 180- a- (90-a) [angle sum of]
= 90°

That is, MN I PY. #

[NOK: no marks awarded without a viable strategy towards solution being supplied. eg. 'angles on same arc' by itself gets no marks.].

Using similar triangles $\frac{20-x}{10} = \frac{L}{10}$

X = 20-h

Area of sties
$$A = \pi \times \frac{\pi}{2}$$

$$= \frac{\pi}{2} (2\omega - \ell)^{2}$$

Volume of solid 10
$$V = \lim_{S \to 0} \sum_{k=0}^{T} \frac{T}{2} (20-k)^{2} dk$$

$$V = \frac{T}{2} \int_{0}^{10} (20-k)^{3} dk$$

$$= -\frac{T}{6} (20-k)^{3} \int_{0}^{10} dk$$

$$= -\frac{T}{6} (40^{3} - 20^{3})$$

$$= 7000 T Ra^{3}$$

= 3665 m (nearest m3)

b)
$$y = \frac{1}{2}$$
 and $y = \frac{\chi^2}{8}$

$$\therefore \chi^3 = 8$$

$$V = \lim_{S \times 90} \frac{2}{x^{2}} = 2\pi \left(2 - i\right) \left(\frac{1}{\lambda} - \frac{n^{2}}{\delta}\right) \sin \theta$$

$$= 2\pi \int_{0}^{2} (x - i) \left(\frac{1}{\lambda} - \frac{n^{2}}{\delta}\right) \sin \theta$$

$$= 2\pi \int_{0}^{2} \left(i - x^{3} - \frac{1}{\lambda} + \frac{x^{2}}{\delta}\right) \sin \theta$$

$$= 2\pi \int_{0}^{2} \left(x - \frac{x^{4}}{\delta} - \ln x + \frac{x^{3}}{\delta}\right)^{2} \sin \theta$$

$$= 2\pi \left(\frac{79}{96} - \ln x\right)$$

$$= 79\pi - 2\pi \ln 2$$

Rotation about y-assis

Area =
$$T(R^2-r^2)$$

Now $R = a + \sqrt{R^2-(y-6)^2}$
 $r = a - \sqrt{R^2-(y-6)^2}$

 $V_{\text{slice}} = \pi (R + r)(R - t). Sy$ $V_{\text{slice}} = \pi (2\alpha)(2\sqrt{R^2 - (4-5)^2}). Sy$ $V = 4\pi\alpha \int_{5-R}^{5+R} \sqrt{R^2 - (4-5)^2} . Cly$ $= 4\pi\alpha . \frac{1}{2}\pi R^2 . Semi-circle$ $= 4\pi\alpha . \frac{1}{2}\pi R^2 . Semi-circle$ $= 4\pi\alpha . \frac{1}{2}\pi R^2 . Semi-circle$

$$= 2\pi^2 R^2 a u^3$$

Q16) (a)
$$\frac{\chi^2}{3+p} + \frac{y^2}{8+p} = 1$$

$$\frac{x^{2} + y^{2} = 1}{4}$$

$$\frac{x^{2} + y^{2} = 1}{4}$$

Now
$$b^2 = a^2/e^2 - 1$$
 $1 = 4/e^2 - 1$
 $e = 4\sqrt{5}$

directories
$$y = \frac{t}{16} \frac{h}{15}$$

$$\frac{2n}{a^2} + \frac{2y}{b^2} = 1$$

$$\frac{2n}{a^2} + \frac{2y}{b^2} \frac{dy}{dx} = 0$$

$$\frac{dy}{dn} = -\frac{2n}{a^2} \times \frac{b^2}{2y}$$

$$= -\frac{b^2}{a^2} \times \frac{5}{2y}$$

$$= -\frac{b^2}{a^2} \times \frac{5}{5} = 0$$

egn of tangert
$$y - 3 \sin \theta = \frac{-3 \cos \theta}{a \sin \alpha} (n - a \cos \alpha)$$

$$ay \sin \theta - ab \sin^2 \theta = -b \cos \theta + ab \cos^2 \theta$$

$$bx \cos \theta + ay \sin \theta = ab (\sin^2 \theta + \cos^2 \theta)$$

$$\frac{x \cos \theta}{a} + \frac{y \sin \theta}{b} = 1$$

(ii)

egn of
$$OQ$$
 $y = -5 \cos Q x$ O

$$\frac{\chi^2}{a^2} + \frac{\chi^2}{5^2} = 1$$

$$\frac{x^2 + 1}{a^2} \frac{b^2}{a^2 \sin^2 \alpha} = 1$$

from diagram
$$z = a \sin \theta$$

 $y = -b \cos \theta$

$$\Delta \text{ Area} = \frac{1}{2} \cdot OQ \cdot \text{ in dist from } ?$$

$$= \frac{1}{2} \frac{ab}{\sqrt{6^2 \omega s} \text{ of } c \sin^2 0} \times \sqrt{a^2 \sin^2 0 s} \frac{1}{2} \sin^2 0$$

$$= \frac{ab}{2} \quad \text{indep of } P.$$

'Q16-continued)

ic) eqn. of normal at P

ii) at Q y =0
$$z = \frac{(a^2 + b^2) \tan \alpha}{a \sin \alpha}$$

$$= \frac{(a^2 + b^2) \sec \alpha}{a}$$

at R
$$x=0$$

$$y = \frac{a^2 + b^4}{b} tan 0$$

at 1 midpoint of RQ

$$X = \frac{1}{2a} \left(a^2 + b^2\right)$$
 sero $Y = \frac{1}{2b} \left(a^2 + b^2\right)$ tano

locus of M

$$(2ax)^{2} - (2bx)^{2} = (a^{2}+b^{2})^{2} (sec^{2}o - tan^{2}o)$$

$$4ax^{2} - 4b^{2}y^{2} = (a^{2}+b^{2})^{2}$$

which is another hyperbola.